Digital Logic : Logic Functions and Minimisation GATE Previous Years Questions Solved

Ques 6: The simultaneous equations on the Boolean variables x,y,z and w

GATE 2000

x+y+z=1

xy=0

xz+w=1

xy+z’w’=0

have the following solution for x,y,z and w, respectively:

(A) 0 1 0 0

(B) 1 1 0 1

(C) 1 0 1 1

(D) 1 0 0 0

Ans : C) 1 0 1 1

Solution: x + y + z = 1 means anyone of x ,y , z can be 1

xy=0 means either x=0 or both x=y=0. So (B)cant be True

xz+w=1 means either x,z both 1 or w is 1. So (A) and (D) cant be true

So ( C) Is True

Ques 7: Which functions does NOT implement the Karnaugh map given below?

GATE 2000

(A) (w+x)y

(B) xy+yw

(C) (w+x)(w+y)(x+y)

(D) None of the above

Ans: (C) (w+x)(w+y)(x+y)

Solution: K-Map is

xy + wy

Option A & B represent same expression

Ques 8: Given the following karnaugh map, which one of the following represents the minimal Sum-Of-Products of the map?

GATE 2001

(A) xy + y’z

(B) wx’y’ + xy + xz

(C) w’x + y’z + xy

(D) xz + y

Ans: (A) xy + y’z

Solution:

Ques 9: Minimum sum of product expression for f(w,x,y,z)f(w,x,y,z) shown in Karnaugh-map below

GATE 2002

(A) xz + y’z

(B) xz’ + zx’

(C) x’y + zx’

(D) None of these

Ans: B) xz’ + zx’

Solution:

Ques 10: Consider the following logic circuit whose inputs are functions f1,f2,f3 and output is f

GATE 2002

Given that

f1(x,y,z)=Σ(0,1,3,5)

f2(x,y,z)=Σ(6,7) and

f(x,y,z)=Σ(1,4,5).

f3 is 

(A) Σ(1,4,5)

(B) Σ(6,7)

(C) Σ(0,1,3,5)

(D) None of these

Ans: (A) Σ(1,4,5)

Solution: f=((f1f2)′f3′)′=f1f2+f3

f1f2=0 (as no common term in both)

So f=f3=Σ(1,4,5)

error: You can only copy the programs code and output from this website. You are not allowed to copy anything else.